5.3b population growth

Wednesday, March 17, 2021 3:44 PM

Malthusian Growth · Rate of growth proportional to population size · Let a=b-d be the birth rate minus death rate. I proportionality factor $\dot{x} = ax = f(x)$, $a \neq 0$. $\Rightarrow x(t) = x_{p}e^{ax}$ $a\bar{x} = 0 \implies \bar{x} = 0$ is the only equilibrium. Note f'(x)=a, so f'(0)=a, so D is locally asymp. Stable if a <0 is unstable if a > 0. X acD t a >0 Logistic growth (Introduced by Pierre Verhulst, 1837) Rate of growth a(x) = r (1 - x) - carryby capacity • For populations x > K, the rate is negative • For populations x < K, the rate is positive. ×= a(x) · x = r(1- ×) × ← autonomous nonlinear)=r(1-×)x =) = 0, K. $f(x) = r(1 - \frac{x}{R})x$ $f'(x) = r\left[\left(1 - \frac{x}{\kappa}\right) + x\left(-\frac{1}{\kappa}\right)\right] = r\left(1 - \frac{2x}{\kappa}\right)$ f'(0) = r, f'(K) = -r

If
$$r \ge 0$$
, then D is an unstable equilibrium
then K is a locally asymp. stable equilibrium.
If we solve using separator of variable then
 $\chi(t) = \frac{\chi_0 K}{\chi_0 + (K-\chi_0)e^{-t}}$, $\chi_0 = \chi(0)$.
 $\Rightarrow \chi(t) = K$ if $\chi_0 \ge 0$ and $r \ge 0$.
So K is actually globally asymp. stable.
 $\chi(t)$
 $fine K$
 $fine K$

Lecture Page 2

1 (x) - M3 x (x a) / (x a) $f'(x) = a_3 \left[(x - \alpha_2) \times f(x - \alpha_1) \times f(x - \alpha_2) \right]$ $f'(0) = a_{3}(-d_{1})(-d_{2}) < 0$, so $\bar{\chi} = 0$ is locally asymp. stable, $f'(\alpha_{1}) = a_{3}(d_{1} - d_{2})d_{1} > 0$, so $\bar{\chi} = \alpha_{1}$ is unstable. $f'(\alpha_2) = \alpha_3(\alpha_2 - \alpha_1)\alpha_2 = 0$, so $\bar{x} = \alpha_2$ is locally asymp. $st_1 \leq k_2$